

Computational Molecular Modeling – Solving Quantum Mechanics Based Calculations Concerning Molecular Properties and Structures

Prabhjyot Saluja | Dr. Jeremy Evert | Department of Computer Science and Department of Chemistry

Abstract

This research is in fulfilment with Blue Waters Student Internship Program (BWSIP). This project employs High Performance Computing (HPC) to solve quantum mechanics based calculations concerning molecular structures and properties. Currently studying proximal influences on FeCO bonding and vibrational dynamics in {FeCO}⁶ porphyrinates.

Project Summary

The sustained-petaflop computing power and massive data resources provided by the Blue Waters system enable scientists and engineers from a wide range of disciplines to make extraordinary leaps in knowledge and discovery. Density Functional Theory (DFT) calculations are being carried out at a variety of levels over a wide range of trans legend fields with the goal of determining the ligand field strength necessary to affect the previously reported frequency crossover the v(Fe-CO) and d(FeCO) modes.

Training

- The Blue Waters system is a Cray XE/XK hybrid machine composed of AMD 6276 "Interlagos" processors and NVIDIA GK110 (K20X) "Kepler" accelerators all connected by the Cray Gemini torus interconnect.
- Participated in two-week intensive training at Petascale Institute to learn different paradigms of parallel computing(e.g. OpenMP, MPI, OpenACC, CUDA etc.)

Blue Waters System Summary

System To

Total Cabinets

Total Peak Performance

XE Peak Performance

XE Bulldozer Cores*

XE Peak Performance

Interconnect Architecture

Approved Node Hours

HPC Resources

Performance Analysis / Profiling

Southwestern Oklahoma State University & Blue Waters, National Center for Supercomputing Applications

otals		
	288	
	13.34 PF	
	7.1 PF	
	362,240	
	313.6 GF	
	3D Torus	
	8000	

	 Triangle Mesh 				
	O Bar Plot				
	Scatter Plot				
	Height Metric				
	Exclusive GET_TIME_OF_DAY				
	Color Metric				
	Exclusive	-	GET_TIME_OF_DAY		
	Function	9	GIGMAD_CQL3D		
	runction	0			
	Thread		200:0:0		
	Inreau	•			
	Height value	321.68	seconds		
	Color value 321.68 seconds		seconds		
	Mesh Plot Axes		ColorScale		
^					
			~		
	Plot Width				
	Plot Depth				
	Diet Heisht				
	Plot Height				
	🗌 Transpa	rency			
4	0				

Data / Observations

Recommendations for Future Study

- chemical properties.
- Nodes.

- 0223-0
- 10.1021/ja503191

Chemistry department is synthesizing new

compounds and performing elemental

analysis on it, we did LCMS (Liquid

chromatography-mass spectrometry) and

NMR (Nuclear Magnetic Resonance

Spectroscopy) to determine the physical and

• The current code is running on a single node, utilizing open source libraries and OpenMP and MPI iterative calls. The next step is to quantify code performance over multiple XE

For profiling and code performance, we're using TAU Performance System, it is capable of gathering performance information through instrumentation of function, methods etc.

Works Cited

"Blue Waters User Portal | System Summary." Blue Waters User Portal | System Summary. National Center for Supercomputing Applications, n.d. Web. 20 Sept. 2016. Linder, D.P. & Rodgers, K.R. J Biol Inorg Chem (2007) 12: 721. doi:10.1007/s00775-007-

The Diagnostic Vibrational Signature of Pentacoordination in Heme Carbonyls Douglas P. Linder, Nathan J. Silvernail, Alexander Barabanschikov, Jiyong Zhao, E. Ercan Alp, Wolfgang Sturhahn, J. Timothy Sage, W. Robert Scheidt, and Kenton R. Rodgers Journal of the American Chemical Society **2014** 136 (28), 9818-982 DOI: