

Southwestern Oklahoma State University SWOSU Digital Commons

Faculty Articles & Research

Pharmacy Practice

8-27-2014

Brief Overview of Type 2 Diabetes Mellitus Treatment Options

Melanie Claborn
Southwestern Oklahoma State University, melanie.claborn@swosu.edu

Follow this and additional works at: https://dc.swosu.edu/cop_pp_articles

Recommended Citation

Claborn, Melanie, "Brief Overview of Type 2 Diabetes Mellitus Treatment Options" (2014). *Faculty Articles & Research*. 13.

https://dc.swosu.edu/cop_pp_articles/13

This Article is brought to you for free and open access by the Pharmacy Practice at SWOSU Digital Commons. It has been accepted for inclusion in Faculty Articles & Research by an authorized administrator of SWOSU Digital Commons. An ADA compliant document is available upon request. For more information, please contact phillip.fitzsimmons@swosu.edu.

Brief Overview of Type 2 Diabetes Mellitus Treatment Options

Melanie Claborn, Pharm.D.
Assistant Professor of Pharmacy Practice
Southwestern Oklahoma State University College of Pharmacy
Clinical Pharmacy Specialist
Oklahoma City Indian Clinic

What are we covering today?

- DM statistics
- Screening
- Pharmacotherapy

What percent of the US population has Diabetes Mellitus?

- A. 9%
- B. 18%
- C. 27%
- D. 36%
- E. 45%

Background

Diagnosed

21.0 million people

Undiagnosed

8.1 million people

TOTAL 29.1 million people 9.3% of the population have diabetes

Age-adjusted* percentage of people aged 20 years or older with diagnosed diabetes, by race/ethnicity, United States, 2010–2012

Rate of new cases of type 1 and type 2 diabetes among people younger than 20 years, by age and race/ethnicity, 2008–2009

Source: SEARCH for Diabetes in Youth Study. NHW=non-Hispanic whites; NHB=non-Hispanic blacks; H=Hispanics; API=Asians/Pacific Islanders; AIAN=American Indians/Alaska Natives.

^{*}The American Indian/Alaska Native (AI/AN) youth who participated in the SEARCH study are not representative of all AI/AN youth in the United States. Thus, these rates cannot be generalized to all AI/AN youth nationwide.

Self Assessment

 For every 1 % decrease in A1c, risk of microvascular complications decreases by

- A. 20%
- B. 40%
- C. 60%
- D. 80%

UKPDS: Glycemic Control-Effects on Microvascular Endpoints

^{*}Estimated hazard ratios (95% CI) between updated mean HbA_{1c} and microvascular endpoints.

Data are adjusted for age at diagnosis of diabetes, sex, ethnic group, smoking, presence of albuminuria, systolic BP, HDL-C, LDL-C, and TG.

Chronic Complications

- Heart disease
- Stroke
- Hypertension
- Blindness/ Retinopathy
- Nephropathy
- Neuropathy
- Amputations
- Dental disease

Impact of Intensive Therapy for Diabetes: Summary of Major Clinical Trials

Study	Microvasc		CVD		Mortality	
•	Initial/Long-term		Initial/Long-term		Initial/Long-term	
UKPDS	Ψ	Ψ	\leftrightarrow	Ψ	\leftrightarrow	Ψ
DCCT / EDIC*	Ψ	ψ	\leftrightarrow	Ψ	\leftrightarrow	\leftrightarrow
ACCORD	<u> </u>		\leftrightarrow		<u></u>	
ADVANCE	Ψ		↔		↔	
VADT	Ψ		←→		←→	

Kendall DM, Bergenstal RM. © International Diabetes Center 2009

UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:854.

Holman RR et al. N Engl J Med. 2008;359:1577. DCCT Research Group. N Engl J Med 1993;329;977.

Nathan DM et al. N Engl J Med. 2005;353:2643. Gerstein HC et al. N Engl J Med. 2008;358:2545.

Patel A et al. N Engl J Med 2008;358:2560.

Duckworth W et al. N Engl J Med 2009;360:129. (erratum: Moritz T. N Engl J Med 2009;361:1024)

At what age should we start screening for DM in ALL patients?

- A. 25 years old
- B. 45 years old
- C. 65 years old
- D. There is no set age, screen only if risk factors present

Who Should be Tested? Asymptomatic Adults

- All adults ≥ 45 years
- Of any age if overweight (BMI > 25) and one or more risk factors
 - Inactive
 - First degree relative with DM
 - High risk ethnic population
 - GDM or delivered baby >9 pounds
 - HTN
 - Low HDL (<35) or high triglycerides (>250)
 - PCOS
 - Previous A1c >5.7%, IGT, or IFG
 - Acanthosis nigricans
 - History of cardiovascular disease
- Repeat every year for pre-DM otherwise every 3 years

When Should Children be Tested?

Overweight

(Weight > 120% ideal for height or BMI >85th percentile)

Plus any TWO

Family history of DM in 1st or 2nd degree relative

High risk ethnic group

Signs of insulin resistance (acanthosis nigricans, HTN, dyslipidemia, PCOS)

Maternal h/o
DM during
child's
gestation

Start at 10 years old and test every 3 years

Watch for Drug-Induced Hyperglycemia

- Pentamidine
- Glucocorticoids
- Nicotinic acid
- Interferon alfa
- Hydrochlorothiazide
- Atypical antipsychotics
- Protease inhibitors

Which is the target for the newest class of oral medications in glucose control?

- A. Sodium glucose co-transporters
- B. Sodium potassium ATPase
- C. Glucose transport by GLUT-4
- D. Octreotide-like peptides

Treatment Options-Oral

- Biguanide
- Sulfonylureas
- Meglitinides
- Thiazolidindiones
- Alpha-glucosidase inhibitors
- Dipeptidyl peptidase-IV (DPP-4) inhibitors
- Selective sodium-glucose transporter-2 (SGLT-2)
- Bile acid sequestrants and dopamine agonists

FDA approved options-Injectable agents

- Insulin
- Glucagon like peptide-1 (GLP-1) agonists
- Amylin analog

Approach to Management of Hyperglycemia

Pathophysiology of Diabetes

Progression of Type 2 Diabetes

Biguanide (metformin)

- First line therapy
- Lowers HbA1c 1-2 %
- MoA-hepatic glucose production, increase insulin sensitivity
- ADR
 - Common: nausea, vomiting, diarrhea (especially early)
 - Uncommon-B12 deficiency, lactic acidosis
- Weight loss or negligible
- Contraindications/Precautions-renal insufficiency, HF, contrast CT scan

Sulfonylureas (glipizide, glimepiride, glyburide)

- MoA-increase insulin secretion from pancreas
- Lowers HbA1c 1-2%
- ADR-weight gain, hypoglycemia
- Inexpensive
- Formulary
- Efficacy/Evidence-Decreases microvascular
- Monitoring
 - Renal function
 - Glyburide active metabolite

Meglitinides

- Repaglinide (Prandin), nateglinide (Starlix)
- MoA-similar to SU
- Decreases A1c 0.5-1.5%
- Monitoring
 - Renal function
- Concerns/Differences
 - Wt gain
 - Expense

Thiazolidindiones

- Pioglitazone (Actos), rosiglitazone (Avandia)
- Rosiglitazone-market status?
- MoA-increased glucose utilization
- Decreases A1c 0.5-1.5%
- Diabetes Prevention
- Monitoring
 - LFTs
- Concerns/Differences
 - CV risk rosiglitazone
 - Cancer risk pioglitazone
 - Sodium/water retention CHF, wt gain
 - Onset
 - Expense-Not on formulary

Alpha-glucosidase inhibitors

- Acarbose (Precose), Miglitol (Glyset)
- Mechanism
 - Decreased GI absorption
- Efficacy/Evidence
 - Lowers A1c 0.5-1%
 - Diabetes prevention
- Monitoring
 - LFTs
- Concerns/Differences
 - Hypoglycemia corrections
 - Flatulence/diarrhea
 - Binding of other drugs
 - Expense-Not on formulary

Incretin Hormones and Glucose Homeostasis

- 1. Endocr Rev. 1999;20:876–913.
- 2. Curr Diab Rep. 2003;2:365–372.

- 3. Diabetes Care. 2003;26:2929–2940.
- 4. Diabetes Metab Res Rev. 2002;18:430–441.

Dipeptidyl Peptidase-IV (DPP-4) Inhibitors

- Formulary-saxagliptin (Onglyza), linagliptin (Tradjenta)
- Not on formulary-sitagliptin (Januvia), alogliptin (Nesina)
- MoA
 - Prolongs incretin hormone (GLP-1, GIP) levels
 - Increasing insulin synthesis and release
 - Decreasing glucagon secretion
- A1c decreases 0.5- 0.8%
- Monitoring-renal function (lower dose)
- Concerns/Differences
 - Sitagliptin, saxagliptin-adjust for renal dysfunction
 - Linagliptin-no dosage adjustment in renal dysfunction
 - Pancreatitis
 - HF

Glucagon like peptide-1 (GLP-1) agonists

- Exenatide (Byetta, Bydureon), liraglutide (Victoza)
- Mechanism
 - Hormone analog
 - Increases insulin secretion
 - Decreases glucagon secretion
- A1C lowering 0.5%–2.0%
- SQ injection
- Concerns/Differences
 - Long acting dosed once weekly
 - CrCl < 30 do not use
 - Nausea/hypoglycemia
 - Pancreatitis/thyroid cancer

Newest Oral Agents Selective sodium-glucose transporter-2 inhibitors (SGLT-2)

- Canagliflozin, dapagliflozin
- MoA
 - Inhibitors of SGLT2
 - Result in increased glucose excretion and lower plasma glucose
- A1C lowering 0.8%–1.2%
- ADR-hypotension, hyperkalemia, genital mycotic infections, UTIs, increased urination
- Weight loss, no hypoglycemia
- Expensive
- CrCl > 45 ml/min

Amylin analog—Pramlintide (Symlin)

- MoA-synthetic analog of human amylin that causes:
 - Glucose-dependent inhibition of glucagon secretion
 - Reduced rate of gastric emptying
 - Increased satiety
- Efficacy (indicated for patients receiving mealtime insulin)
 - A1C lowering of 0.5%–0.7%
- Dose-different for Type 1 and Type 2
- Adverse effects
 - Nausea, vomiting, hypoglycemia with insulin
- Contraindications
 - Gastroparesis
 - Hypoglycemic unawareness

Comparison of Insulin Profiles

Drugs and Primary Effects

Fasting Glucose

- Metformin
- Insulin detemir/glargine
- NPH insulin

Mixed Glycemic Effects

- Sulfonylurea
- Mixed insulin
- SGLT-2 inhibitor
- Liraglutide and weekly exenatide
- TZDs

Postprandial Glucose

- Regular insulin
- Insulin aspart/lispro/ glulisine
- Alpha-glucosidase
- Meglitinides
- DPP-4 inhibitors
- Twice daily exenatide
- Pramlintide

GLYCEMIC CONTROL ALGORITHM

LIFESTYLE MODIFICATION

(Including Medically Assisted Weight Loss)

Management
of Type 2
Diabetes in
Children and
Adolescents

Algorithm for Adding/Intensifying Insulin

What is "Intensive Control" of Diabetes? More than glycemic control

- Glycemic control (A1C < 7%)
 - Every 3 months
- Blood Pressure Management (< 140/80)</p>
 - Every visit
- Lipid Management (LDL <100, TG < 150, HDL > 50)
 - Yearly
- **S** Aspirin Therapy

- **6** Immunizations
 - Influenza yearly
 - Pneumococcal at diagnosis
 - Hep B
- Monitor for complicationsyearly
- 8 Education
 - Self management

Key Points

- Glycemic targets & BG-lowering therapies must be individualized
- Diet, exercise, & education: foundation of any T2DM therapy program
- Unless contraindicated, metformin = optimal 1stline drug
- Ultimately, many patients will require insulin therapy alone or in combination with other agents to maintain BG control
- Treatment decisions should involve the patient

References

- 1. Centers for Disease Control and Prevention. *National Diabetes Statistics Report:* Estimates of Diabetes and Its Burden in the United States, 2014. Atlanta, GA: US Department of Health and Human Services; 2014. http://www.cdc.gov/diabetes/pubs/statsreport14.htm. Accessed July 17, 2014.
- 2. American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care 2014;37(suppl 1): S14-S80.
- 3. Garber AJ, Abrahamson MJ, Barzilay JI, et al. AACE comprehensive diabetes management algorithm 2013. Endocr Pract 2013;19:327-35.
- 4. Garber AJ, Abrahamson MJ, Barzilay JI, et al. American Association of Clinical Endocrinologists' comprehensive diabetes management 2013 consensus statement. Endocr Pract 2013;19(suppl 2):1-38.
- 5. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012;35:1364-79.
- 6. Kirkman MS, Briscoe VJ, Clark N, et al. Diabetes in older adults. Consensus report from the American Diabetes Association and the American Geriatrics Society. Diabetes Care 2012;35:2650-64.
- 7. UptoDate Online-Management of newly diagnosed Type 2 Diabetes Mellitus in children and adolsecents Pediatrics 2013; 131 (2):364.

Contact Information

Ext 494 melanie.claborn@swosu.edu

"If you truly loved me, you'd swim back to the ship and get my diabetes medicine."

Class	HbA1c lowering	Advantages	Disadvantages	F/NF
Biguanide	1-2%	 Extensive experience No hypoglycemia Weight neutral ?↓CVD 	GastrointestinalLactic acidosisB-12 deficiencyContraindications	F
SUs / Meglitinides	1-2% 0.5-1.5%	 Extensive experience 	HypoglycemiaWeight gainLow durability? Ischemic preconditioning	F/NF
TZDs	0.5-1.5%	 No hypoglycemia Durability ↓ TGs, ↑ HDL-C ? ↓ CVD (pio) 	 Weight gain Edema / heart failure Bone fractures ? ↑ MI (rosi) ? Bladder ca (pio) 	NF
α-GIs	0.5-1%	 No hypoglycemia Nonsystemic ↓ Post-prandial glucose ? ↓ CVD events 	 Gastrointestinal Dosing frequency Modest ↓ A1c 	NF 10

Class	HbA1c lowering	Advantages	Disadvantages	F/NF
DPP-4 inhibitors	0.5- 0.8%	No hypoglycemiaWell tolerated	 Modest ↓ A1c ? Pancreatitis Urticaria 	F
SGLT-2 inhibitors	0.8-1.2%	Weight neutral or lossNo hypoglycemia	Mycotic infectionsHyperkalemia,hypotension	NF
GLP-1 receptor agonists	0.5-2.0%	Weight lossNo hypoglycemia? Beta cell mass? CV protection	GI? PancreatitisMedullary caInjectable	NF
Amylin mimetics	0.5%-0.7%	Weight loss↓ PPG	 GI Modest ↓ A1c Injectable Hypo w/ insulin Dosing frequency 	NF
Bile acid sequestrants	0.5%?	 No hypoglycemia Nonsystemic ↓ Post-prandial glucose ↓ CVD events 	 GI Modest ↓ A1c Dosing frequency 	F 41

Adverse Effect Profiles

	MET	DPP-4i	GLP-1 RA	TZD	AGI	SU GLN	INSULIN	SGLT-2	PRAML
нүро	Neutral	Neutral	Neutral	Neutral	Neutral	Moderate/ Severe Mild	Moderate to Severe	Neutral	Neutral
WEIGHT	Slight Loss	Neutral	Loss	Gain	Neutral	Gain	Gain	Loss	Loss
RENAL/ GU	Contra- indicated Stage 3B,4,5	Dose Adjustment May be Necessary (Except Linagliptin)	Exenatide Contra- indicated CrCl < 30	May Worsen Fluid Retention	Neutral	More Hypo Risk	More Hypo Risk & Fluid Retention	Infections	Neutral
GI Sx	Moderate	Neutral	Moderate	Neutral	Moderate	Neutral	Neutral	Neutral	Moderate
CHF	Neutral		Neutral Neutral	Moderate	Neutral	Neutral	Neutral	Neutral	Neutral
CVD	Benefit	Neutral		Neutral		?			
BONE	Neutral	Neutral	Neutral	Moderate Bone Loss	Neutral	Neutral	Neutral	? Bone Loss	Neutral