Black Gold: The Oklahoma Gold Rush

Westview Staff

Follow this and additional works at: https://dc.swosu.edu/westview

Recommended Citation
Available at: https://dc.swosu.edu/westview/vol1/iss1/11
BLACK GOLD

THE OKLAHOMA GOLD RUSH
“UNTOLD riches, bands o’ pure gold as high as the eye can see, nuggets so big you cain’t lift ‘em,” many a prospector’s claim rang out. Panning for the sparkle that would “light up” a man’s eye, the sanest man could be driven crazy in his search for the substance of which dreams were made: GOLD!

Romanticizing the Old West, numerous stories have been written mesmerizing readers with tales of overnight gold and silver strikes, especially in the Rockies during the 1850’s, much like the present rush for “Black Gold: the Oklahoma Gold Rush of the 1980’s.”

Recently, while on vacation, winding my way through the Colorado Rockies, I was beckoned by the lure of the historic gold mining “boom” towns of Cripple Creek, Victor and Central City. Central City, the most famous, is a national “shrine” to what they called the “richest, square mile on earth.” There are remnants in Central City of prosperous days past, now reduced to nothing more than a mere tourist attraction. With its freshly painted Victorian storefronts selling trinkets of every sort, to the wooden signs forever warning those adventuresome souls to STAY AWAY FROM THE OLD MINE SHAFTS!, come the uneasy feelings that exploitation knows. The mazes of underground mine shafts riddle the earth useless, their openings like silent gravemarkers dot the Colorado landscape.

To a “tinhorn” whose eyes had never viewed the Rockies, I wondered if, one hundred years hence, the present-day oil and gas “boom” towns of Elk City, Clinton and Weatherford would be scarred and reduced to ghost town proportions also. Many oil field exerts, as well as landowners, businessmen and townspeople have speculated on how long the furious rush for production will last in this region. Many parallels can be drawn to these two similarly “money-crazed” periods in history, from the substances that brought showers of overnight riches, the influx of new migrants from every state seeking jobs offering “big” money, to the dangers each respective occupation entails. The similarities in lifestyles between a miner and an “oilie” seem more than coincidental, as are the corruption and abuse that followed mining, and still follow the oil industry today. Their specialized terminology or “slang”, as well as the pressures and physical demands of these jobs, set the men who work in these industries apart as special kinds of beings. Not everyone can stand the rigors of these lifestyles, nor would some want to.

It became obvious to the staff of Westview that history, taking place right under our very feet, is changing the course of many western Oklahomans’ future, or at least their pocketbooks. In an effort to link more effectively the educational awareness of native Western Oklahomans to those who actively work in the oil industry, we have sought out some of the “pioneers” in this region. An active partnership in the Anadarko Basin is the GHK Company (Glover, Hefner and Kennedy), who contract drilling rigs from the Parker Drilling Company, the largest drilling company in the world, owned by Robert L. Parker. According to a brochure published by GHK in May 1981, the company is “jointly owned by Robert A. Hefner III and David O’D Kennedy. During its 20-year history, GHK has built an organization of specialists in all phases of deep natural gas exploration, development and production.

GHK’s operations have focused on the deep sediments in the Anadarko Basin of Western Oklahoma and the Texas Panhandle. Shallow discoveries within the Greater Anadarko Basin have already established this area as one of the two most productive natural gas provinces in North America. However, Hefner, President of GHK, has seen that even within this productive province lies a “new frontier,” virtually unexplored below 15,000 feet.

In 1969, GHK’s second deep wildcat established the gas-producing capabilities of the Deep Anadarko Basin. This discovery, the No. 1-1 Green, reached 24,453 feet, then the second deepest hole ever drilled. Today more than 4 trillion cubic feet of gas has been discovered in the basins at depths below 15,000 feet. Yet less than 4% of the deep sediments have been explored.

Presently drilling the 1-1 Robinson well, the Parker 201 rig, the largest land drilling rig ever
built, is designed to reach 50,000+ feet with a target depth of 33,000+ feet. It will set a record as the world's deepest well drilled for hydrocarbons.

The industry's expenditures for exploration in the Deep Anadarko Basin approached 2 billion in 1980. With more than 442 deep well locations currently active in the basin, GHK estimates the industry's investment will top the $2 billion dollar mark in 1981.

GHK is currently operating twenty-two deep wells (as of May 1981) in the Anadarko Basin. GHK's dominant acreage position and 20 years of deep drilling experience will allow it to continue its dominant role in the development of the Deep Anadarko Basin.

To a "layman", the preceding facts and statistics about the oil and gas "boom" and the prosperity that it brings seem quite impressive and optimistic. But since the pendulum always swings both ways, we cautiously pose the question of what price we will pay for this "instant" wealth, and whether or nor history will be repeated.

The Westview staff felt a closer examination of the "life and times" of an oil field worker might lend some insight into the problems they face. For it is the workers, after all, who are responsible for this economic upturn in our lives.

Without hesitation, I volunteered to venture to Elk City, find this mammoth rig all the news media have been busy immortalizing, and interview some if its "hands."

AUGUST 7, 1981 - 7 pm.

As I drive across the bumps of the cattleguard, an ominous, shiny new oil rig towers overhead like a giant Christmas tree, its mercury lamps blinding me in the darkness. It is my first look at the Parker No. 201 - the largest land drilling rig in the world, located about 6 miles southeast of Elk City, Oklahoma. An awesome sight for one who has never been so close to one of the symbols of wealth that has become so common on the Western Oklahoma landscape. My first impression is amazement at the orderliness around the rig, furthering my feeling that this rig is a source of pride to its crews, company, and Western Oklahoma as well. I pull in front of one of the trailers, grab my notebook and tape recorder, and with a deep breath knocked on the door. I am greeted by a man named Herb Ropp, a welder-roughneck as he put it. As I begin explaining why I'm there, he becomes excited that someone wants to hear about his life and at the possibility that an article might help inform people about the industry. He agrees to an interview, but expresses the wish that I include the views of the "head toolpusher," Ronnie Givens. Since Ronnie was currently on his "days off," a date for the interview was set for the following week.

AUGUST 12, 1981 - 3 pm.

An enormous American flag greets me from atop its high perch on the gleeming rig, waving lazily against a sky that looks like rain. My second look at this blue and white "history-maker," leaves me no less impressed than the first. Ronnie Givens is a lanky, slow-talking, good 'ol boy-type, while Herb Ropp pulls no "punches" in his straightforward opinions, delivered with a gleam of mischief in his eye and a lip curled around his favorite dip. Both of these men are very cordial, proud of their profession and eager to tell their "stories." This is part of a three-hour conversation that ensues.
HERB ROPP talks candidly with WESTVIEW. RONNIE GIVENS was on his “days off” during photo session.

WESTVIEW: Ronnie, tell me about your experience and how long you’ve been working in the oil field?

RONNIE GIVENS: Well, my brother-in-law’s the one that started me in it. I started workin’ weekends for the guys that wanted off. I was makin’ better money than I was mechanic-ing, so I guess all told, I’ve been in the oil field about seven years now.

WV: Where are you from originally?

RG: Wichita, Kansas. My daddy was in the Air Force and he got transferred out here and ended up livin’ here.

WV: So in seven years you’ve gone from being like a roughneck to a toolpusher? Is that the common thing now?

RG: Seems like I’ve talked to people that have become a toolpusher in two years or less?

WV: The reason for somethin’ like that happenin’ is they’re gettin’ too many rigs and not enough help. They vance a lot quicker than what they did before.

RG: Do you feel that’s bad? It’s pretty dangerous up there isn’t it?

WV: Yeah, really it is because they need more experience. As far as the danger goes, it’s not all that bad, ‘cause they’re pretty strict on safety.

WV: The reason I was asking, was because if there are “hands” that aren’t that experienced, isn’t that endangering the safety of the other members of the crew?

RG: It could, but it’s mainly up to the driller, I mean, he got the lever to pull, if he knows what he’s doing, it’s pretty safe.

WV: Is this particular rig all power everything? I mean is it electric?

RG: What it is, is what they call diesel electric. You got four motors out there, 1500 horses apiece. It’s got generators on the back of ‘em. 1500 Kilowatt generators and the motor turns the generator and makes electricity. We’ll put this one on a high-line. It’s so much cheaper to run it off these high-lines than it is off motors ‘cause they use so much diesel. Diesel’s gettin’ so high now, it’s cheaper to pay for the electricity we use.

WV: Are some of your rigs still run on gas?

RG: Oh yeah. You go what you call diesel electric rig and a power rig. Most of ‘em anymore are pretty well diesel now.

(Pause)

WV: Well, I guess it’s kind of hard to say what the average life of an oil field worker is like because I’m sure everyday’s different, isn’t it?

RG: You mean like -- what’s our life like or somethin’?

WV: Well, my original idea for this story was to compare the life of a gold mine worker to that of an oil field worker. They’re a lot the same through the average day I would think, with dangers to face and so on. They make more money than the average worker and the industries both reflect on the communities surrounding them. We felt it would be interesting because a lot of people just don’t know what it’s like to work out here. When I was a kid growin’ up in Western Oklahoma, oil field was kinda’...well...everybody looked down on those people because they were transient and never stayed very long.

HERB ROPP: In other words, “oil field trash”, that’s what they call us.

WV: Well not exactly... .I don’t think...

HR: Oh yeah. Back in the 60’s it was real bad. The wells we were drilling back then only took one to two months to drill sometimes, ‘cause they were real shallow, so it didn’t take so long. That’s why we were always movin’ around, to follow the work.

WV: Well, I’ve altered my viewpoint anyway. . .it’s a good industry for where we live, and it has affected a lot of people favorably and I think they’re aware of that.

RG: The only reason they went into the oil field is because of the money, ya know. They’re many of us that would love to have a “city” job. You see a lot of college graduates in the oil field. That’s somethin’ I could never figure out. Ol’ boy who’s had several years of college, you know, just majors in something, turns right around and comes to the “oil patch”. Well, why spend all this money on college, when you could have come out here to work...that’s where they’ll end up anyway.

HR: Where the term “oil field trash” comes from is ya take most people who are 8 to 5 workers – “white collar” – they go and do their work, and they’re honest to their work. The money they make in comparison to the money in the oil field...now they’re a big difference. So in the society part of it, is this...they can’t understand why a person out here working, doin’ the work they do in the oil field, makes twice and three times the

(continued on page 34)
API: the American Petroleum Institute. Founded in 1920, this national oil trade organization is the leading standardizing organization on oil-field drilling and producing equipment.

AUTOMATIC DRILLING-CONTROL UNIT: a mechanism used to regulate the amount of weight on the bit and not requiring attendance by personnel.

AUTOMATIC SHUTDOWN: a system in which certain instruments are used to control or maintain the operating conditions of a process. If conditions become abnormal, this system automatically stops the process and notifies the operator of the problem.

BIT: the cutting or boring element used in drilling oil and gas wells. Most bits used in rotary drilling are roller-cone bits. The bit consists of the cutting element and the circulating element. The circulating element permits the passage of drilling fluid and utilizes the hydraulic force of the fluid stream to improve drilling rates. In rotary drilling, several drill collars are joined to the bottom end of the drill collar.

BIT BREAKER: a device used in rotary drilling to unscrew, or break out, the bit from the drill stem.

BLOWOUT: an uncontrolled flow of gas, oil, or other well fluids into the atmosphere.

BLOWOUT PREVENTER (BOP): equipment installed at the wellhead at surface level on land rigs and on the seafloor of floating off-shore rigs to prevent the escape of pressure either in the annular space between the casing and drill pipe or in an open hole during drilling and completion operations.

BREAK CIRCULATION: to start the mud pump to restore circulation of the mud column.

BREAK OUT: to unscrew one section from another section of pipe, especially drill pipe while it is being withdrawn from the wellbore. During this operation, the breakout tongs are used to start the unscrewing operation.

BRINE: water that has a large quantity of salt, especially sodium chloride, dissolved in it; salt water.

BRING IN A WELL: to complete a well and put it in producing status.

CAP A WELL: to control a blowout by placing a very strong valve on the wellhead.

CASED HOLE: a wellbore in which casing has been run.

CASING: steel pipe placed in an oil well and not requiring attendance by personnel.

CATHEAD: a spool-shaped attachment on a winch around which rope for hoisting and pulling is wound. The breakout cathead, a rotating spool located on the driller's side of the drawworks, is used as a power source for unscrewing drill pipe. The makeup cathead is a power source for screwing together joints of pipe.

CEMENT CASING: to fill the annulus between the casing and hole with cement to support the casing and to prevent migration of fluids between permeable zones.

CHRISTMAS TREE: the control valves, pressure gauges, and chokes assembled at the top of a well to control the flow of oil and gas after the well has been drilled and completed.

CIRCULATE: to pass from one point to another. Drilling fluid circulates from the suction pit through the drill pipe to the bottom of the well and returns through the annulus.

COME OUT OF THE HOLE: to pull the drill stem out of the wellbore. This withdrawal is necessary to change the bit, change from a core barrel to the bit, run electric logs, prepare for a drillstem test, run casing, and so on.

DAILY DRILLING REPORT: a record made each day of the operation on a working drilling rig.

DAY TOUR: (pronounced "day tower") a period of 8 to 12 daylight hours worked by a drilling or workover crew when equipment is being run around the clock.

DEADMAN: a buried anchor to which guy wires are tied to steady the derrick, mast, stacks, and so on.

DEAD WELL: a well that has ceased to produce oil or gas, either temporarily or permanently; one that has kicked and been killed.

DEEP DRILLING: any drilling project that is deeper than average for a given area or period in time.

DEFLOCCULATION: the dispersion of solids that have stuck together in drilling fluid, usually by means of chemical thickeners.

DEPLETION ALLOWANCE: a reduction in U.S. taxes for producers of minerals to compensate for the exhaustion of an irreplaceable capital asset.

DERRICK: a large load-bearing structure, usually of bolted construction. In drilling, the standard derrick has four legs standing at the corners of the substructure and reaching to the crown block. The substructure is an assembly of heavy beams used to elevate the derrick and provide space to install blowout preventers, casingheads, etc. Because the standard derrick must be assembled piece by piece, it has largely been replaced by the mast, which can be lowered and raised without disassembly.

DERRICKMAN: the crew member who handles the upper end of the drill stem as it is being hoisted out of or lowered into the hole. He is also responsible for the conditioning of the drilling fluid and the circulating machinery.

DIAMOND BIT: a drilling bit that has a steel body surfaced with industrial diamonds. The rotation of the extremely hard diamonds cuts the surface of the rock.

DIRECTIONAL DRILLING: intentional deviation of a wellbore from the vertical. Although wellbores are normally drilled vertically, it is sometimes necessary or advantageous to drill at an angle from the vertical. Controlled directional drilling makes it possible to reach subsurface areas laterally remote from the point where the bit enters the earth.

DISPOSAL WELL: a well into which salt water is pumped, usually part of a saltwater-disposal system.

DISTILLATE: 1. a product of distillation; the liquid condensed from the vapor produced in a still. 2. heavy gasoline or light kerosines used as fuels.

DISTRIBUTION: the apportioning of daily production rates to wells on a lease. Because there are many wells on a lease, such production is apportioned on the basis of periodic tests rather than on the individual receiving and gauging of oil at each well.
DRAWWORKS: The hoisting mechanism on a drilling rig. It is essentially a large winch that spools off or takes in the drilling line and thus raises or lowers the drill stem and bit.

DRILL: To bore a hole in the earth, usually to find and remove subsurface formation fluids such as oil and gas.

DRILL COLLAR: A heavy, thick-walled tube, usually steel, used between the drill pipe and the bit in the drill stem to weight the bit in order to improve its performance.

DRILLER: The employee directly in charge of a drilling or workover rig and crew. His main duty is operation of the drilling and hoisting equipment, but he is also responsible for the downhole condition of the well, operation of downhole tools, and pipe measurements.

DRILLER'S LOG: A record that describes each formation encountered and lists the drilling time relative to depth, usually in 5- to 10-ft. intervals.

DRILL PIPE: The heavy seamless tubing used to rotate the bit and circulate the drilling fluid. Joints of pipe 30 ft. long are coupled together by means of tool joints.

DRILL STEM: The entire length of tubular pipes, composed of the kelly, the drill pipe, and drill collars, that make-up the drilling assembly from the surface to the bottom of the hole.

DRY HOLE: Any well that does not produce oil or gas in commercial quantities. A dry hole may flow water, gas, or even oil, but not enough to justify production.

EASEMENT: A right that one individual or company has on another's land. In the petroleum industry, it usually refers to the permission given by a landowner for a pipeline or access road to be laid across his property.

ELECTRIC RIG: A drilling rig on which the energy from the power source is distributed to the various rig components through electrical conductors as opposed to distribution by mechanical transmission. Such a rig has an electric drive.

FAULT: A break in subsurface strata. Often strata on one side of the fault line have been displaced (upward, downward, or laterally) relative to their original positions.

FISH: An object left in the wellbore during drilling or workover operations that must be recovered before work can proceed. It can be anything from a piece of scrap metal to a part of the drill stem. 2. To recover from a well any equipment left there during drilling operations, such as a lost bit or drill collar or part of the drill string. 3. To remove from an older well certain pieces of equipment such as packers, liners, or screen pipe to allow reconditioning of the well.

FISHING TOOL: A tool designed to recover equipment lost in the well.

FORMATION TESTING: The gathering of data on a formation to determine its potential productivity before instilling casing in a well. The conventional method is the drill-stem test. Incorporated in the drill-stem-testing tool are a packer, valves or ports that may be opened and closed from the surface, and a pressure-recording device.

DRY HOLE: Any well that does not produce oil or gas in commercial quantities. A dry hole may flow water, gas, or even oil, but not enough to justify production.

HAND: A worker in the oil industry, especially one in the field.

HOLIDAY: A gap or void in coating on a pipeline or in paint on a metal surface.

ICC: The Interstate Commerce Commission, a federal board that has jurisdiction over interstate pipelines.

IDIOT STICK: (Slang) A shovel.

INJECTION WELL: A well in which fluids have been injected into an underground stratum to increase reservoir pressure.

JAR: A percussion tool operated mechanically or hydraulically to deliver a heavy hammer blow to objects in the borehole.

JET: To use a jet to clean out the collar, slush pit, and so forth.

JOINT: A single length (30 ft.) of drill pipe or of drill collar, casing, tubing, or rod that has threaded connections at both ends. Several joints screwed together constitute a strand of pipe.

JUG HUSTLER: (Slang) The member of a seismograph crew who places the geophones.

JUNK: Metal debris lost in a hole. Junk may be a lost bit, pieces of a bit, milled pieces of pipe, wrenches, or any relatively small object that impedes drilling and must be fished out of the hole.

KELLY: The heavy steel member, four- or six-sided, suspended from the swivel through the rotary table and connected to the top-most joint of drill pipe to turn the drill stem as the rotary table turns.

KNOWLEDGE BOX: (Slang) The cup-board or desk in which the driller keeps the various records pertaining to a drilling operation.

KNUCKLE JOINT: A deflection tool placed above the drill bit in the drill stem, with a ball and socket arrangement that allows the tool to be deflected at an angle; used in directional drilling.

LANDMAN: A person in the petroleum industry who negotiates with landowners for land options, oil-drilling leases, and royalties and with producers for the polling of production in the field; also called leaseman.

LAY DOWN PIPE: To pull drill pipe or tubing from the hole and place it in a horizontal position on a pipe rack.

LEAD LINE: The pipe through which oil or gas flows from the well to additional equipment on the lease.

LEAD-TONG MAN: The crew member who operates lead tongs during hoisting of the drill pipe.

LEAD TONGS: (Slang) The pipe tongs suspended in the derrick and operated by a wireline connected to the breakout cathead. They are also called breakout tongs.

LEASE: 1. A legal document executed between a landowner, or lessor, and a company or individual, as lessee, that grants the right to exploit the premises for minerals or other products. 2. The area where production wells, stock tanks, separators, LACT units and other production equipment are located.

LEASE HOUND: (Slang) A landman who procures leases on tracts of land for exploration and development of petroleum products.

LESSEE: The recipient of a lease (as an oil and gas lease).

LESSOR: The conveyer of a lease (as an oil and gas lease).

LOST-CIRCULATION MATERIAL: A substance added to cement slurries or drilling muds to prevent the loss of cement or mud to the formation.
MAKE A CONNECTION: to attach a joint of drill pipe onto the drill stem suspended in the wellbore to permit deepening of the wellbore.

MAKE A HAND: (slang) to become a good worker.

MAKE A TRIP: to hoist the drill stem out of the wellbore to perform one of a number of operations such as changing bits, taking a core, and so forth, and then to return the drill stem to the wellbore.

MAKE UP: 1. to assemble and join parts to form a complete unit (as to make up a string of casing). 2. to screw together two threaded pieces. 3. to mix or prepare (as to make up a tank of mud). 4. to compensate for (as to make up for lost time).

MAKE UP A JOINT: to screw a length of pipe into another length of pipe.

MAKEUP CATHEAD: the cathead used as a power source for screwing together joints of pipe.

MAST: a portable derrick capable of being erected as a unit, as distinguished from a standard derrick, which cannot be raised to a working position as a unit. For transporting by land, the mast can be divided into two or more sections to avoid excessive length extending from the truckbeds on the highway.

MINERAL RIGHTS: the rights of ownership, conveyed by deed, of gas, oil, and other minerals beneath the surface of the earth.

MONKEYBOARD: the derrickman’s working platform. As pipe or tubing is run into or out of the hole, the derrickman must handle the top end of the pipe, which may be as high as 90 ft. in the derrick or mast. The monkeyboard provides a small platform to raise him to the proper height to be able to handle the top of the pipe.

MORNING TOUR: (pronounced “tow-er”) an 8-hr. shift worked by a drilling crew or other oil-field workers.

MOTORMAN: the crew member on a rotary drilling rig responsible for the care and operation of drilling engines.

MOUSEHOLE: an opening through the rig floor, usually lined with pipe, into which a length of drill pipe is placed temporarily for later connection to the drill string.

MUD: the liquid circulated through the wellbore during rotary drilling and work-over operations. In addition to its function of bringing cuttings to the surface, drilling mud cools and lubricates the bit and drill stem, protects against blowouts by holding back subsurface pressures, and deposits a mud cake on the wall of the borehole to prevent loss of fluids to the formation.

OIL PATCH: (slang) the oil field.

OIL SHALE: a formation containing hydrocarbons that cannot be recovered by an ordinary oil well but can be mined. After processing, the hydrocarbons are extracted from the shale. The cost of mining and treatment of the oil shale has until recently been too great to compete with the price of oil from wells.

OIL SLICK: a film of oil floating on water, considered a pollutant.

OSHA: the Occupational Health and Safety Administration.

PIPELINE: a system of connected lengths of pipe, usually buried in the earth or laid on the seafloor, that is used for transporting petroleum and natural gas.

POSTHOLE WELL: (slang) a relatively shallow well.

PRODUCTION: 1. the phase of the petroleum industry that deals with bringing the well fluids to the surface and separating them and with storing, gauging, and otherwise preparing the product for the pipeline. 2. the amount of oil or gas produced in a given period.

PRODUCTION CASING: the last string of casing or liner that is set in a well, inside of which is usually suspended the tubing string.

PRODUCTION LOG: a well-logging method that measures and records the flow of fluid past an indicating device placed at varying depths in a producing or injection well; a spinner survey.

RATHOLE: 1. a hole in the rig floor 30 to 35 ft. deep, lined with casing that projects above the floor, into which the Kelly and swivel are placed when hoisting operations are in progress. 2. a hole of a diameter smaller than the main hole that is drilled in the bottom of the main hole.

RATHOLE CONNECTION: the addition of a length of drill pipe or tubing to the active string. The length to be added is placed in the rathole, made up to the Kelly, pulled out of the rathole, and made up into the string.

RAW CRUDE: a crude oil before it is refined.

REFINE: to manufacture petroleum products from crude oil.

REFINERY: the physical plant and attendant equipment used in the process of refining.

RELEASE: a statement filed by the lessee of an oil and gas lease indicating that the lease has been relinquished.

RELIEF WELL: a well drilled near and deflected into a well that is out of control, making it possible to bring the wild well under control.

RESERVE PIT: 1. (obsolete) a mud pit in which a supply of drilling fluid was stored. 2. a waste pit, usually an excavated, earthen-walled pit. It may be lined with plastic to prevent contamination of the soil.

RESERVOIR: a subsurface, porous, permeable rock body in which oil or gas or both are stored. Most reservoir rocks are limestones, dolomites, sandstone, or a combination of these. The three basic types of hydrocarbon reservoirs are oil, gas, and condensate. An oil reservoir generally contains three fluids - gas, oil, and water - with oil the dominant product.

RIG: the derrick, drawworks, and attendant surface equipment of a drilling or workover unit.

RIG DOWN: to dismantle the drilling rig and auxiliary equipment following the completion of drilling operations; to tear down.

RIG UP: to prepare the drilling rig for making hole; to install tools and machinery before drilling is started.

RIGHT-OF-WAY: a strip of land usually 50 to 80 ft. wide on which permission has been granted by the landowner to construct a pipeline.

ROTARY DRILLING: a drilling method in which a hole is drilled by a rotating bit to which a downward force is applied. The bit is fastened to and rotated by the drill stem, which also provides a passageway through which the drilling fluid is circulated. Additional joints of drill pipe are added as drilling progresses.

ROUGHNECK: a worker on a drilling or workover rig, subordinate to the driller; sometimes called a rotary helper, floorman, or rig crewman.

ROUSTABOUT: a worker who assists the foreman in the general work around producing oil wells, usually on the property of the oil company. A roustabout may also be a helper on a well-servicing unit or one who does utility work on an offshore drilling rig.

ROYALTY: the part of oil, gas, and minerals or their cash value paid by the lessee to the lesor or to one who has acquired possession of the royalty rights, based on a certain percentage of the gross production from the property.

SEDIMENTARY ROCK: a rock composed of materials that were transported to their present position by wind or water. Sandstone, shale, and limestone are sedimentary rocks.
SHALE: a fine-grained sedimentary rock composed of consolidated silt and clay or mud. Shale is the most frequently occurring sedimentary rock.

SLUSH PIT: the mud pit in which rotary drilling cuttings are separated from the mud stream or in which mud is treated with additives or temporarily stored before being pumped back into the well. Modern rotary drilling rigs are generally provided with three or more pits, usually fabricated steel tanks fitted with built-in piping, valves and mud agitators.

SPINNING CHAIN: a Y-shaped chain used to spin up (tighten) one joint of drill pipe into another. In use, one end of the chain is attached to the tongs, another end to the spinning cathead, and the third end is free. The free end is wrapped around the tool joint and the cathead pulls the chain off the joint, causing the joint to spin (turn) rapidly and tighten up. After the chain is pulled off the joint, the tongs are secured in the same spot, and continued pull on the chain (and thus on the tongs) by the cathead makes the joint up to final tightness.

STAKE A WELL: to precisely locate on the surface the point at which a well is to be drilled.

STANDARD DERRICK: a derrick that is built piece by piece at the drilling location opposed to a jackknife mast, which is preassembled. Standard derricks have been replaced almost totally by jackknife masts.

STANDPIPE: a vertical pipe rising along the side of the derrick or mast, which joins the mud pump to the rotary hose and through which mud is pumped.

STANDS: the connected joints of pipe racked in the derrick or mast when not in use. Compare double and fourble. Stratification: natural layering or lamination characteristic of sediments and sedimentary rocks.

STRATIFICATION: natural layering or lamination characteristic of sediments and sedimentary rocks.

STRAT TEST: a well that is drilled primarily to obtain geological information and that is usually not completed even if commercial quantities of petroleum are found.

SURFACE PIPE: the first string of casing set in a well after the conductor pipe, varying in length from a few hundred feet to several thousand.

TENSILE STRENGTH: a measure of the load required to part metal. Tensile strength is greater than yield strength.

TERMINAL: a point to which oil is transported through pipelines. It usually includes a tank farm and may include tanker-loading facilities.

THROW THE CHAIN: to flip the spinning chain up from a tool-joint box so that the chain wraps around the tool-joint pin after it is stabbed into the box. The stand or joint of drill pipe to be made up is turned or spun by a pull on the spinning chain from the cathead on the drawworks.

TONGMAN: the member of the drilling crew who handles the tongs.

TONGS: the large wrenches used for turning when making up or breaking out drill pipe, casing, tubing, or other pipe; variously called casing tongs, rotary tongs, and so forth according to the specific use. Power tongs are pneumatically or hydraulically operated tools that serve to spin the pipe up tight, and, in some instance, to apply the final makeup torque.

TOOL PUSHER: a drilling foreman or rig superintendent.

TOUR: (pronounced "tower") an 8-hr. shift worked by a drilling crew or other oil-field workers.

TRIP: (see make a trip.)

TRIP IN: to lower the drill stem into the wellbore.

TRIP OUT: (see come out of the hole.)

TWIST OFF: of drill pipe or drill collars, to part or split primarily because of metal fatigue in the pipe or because of mishandling.

ULTIMATE RECOVERY: total anticipated recovery of oil of gas from a well, lease, or pool.

UNDERGAUGE BIT: a drilling bit whose outside diameter has been worn down until it is smaller than the bit specifications allow. A 6 7/8 in. bit worn down to 6 5/8 in. is undergauge.

UNDERGROUND BLOWOUT: an uncontrolled flow of gas, salt water, or other fluids out of the wellbore and into another formation that the wellbore has penetrated in the subsurface.

UNIT OPERATOR: the oil company in charge of development and producing in an oil field in which several companies have joined together to produce the field.

UNPROVEN AREA: a wildcat area.

VALUE: a device used to control the rate of flow in a line, to open or shut off a line completely, or to serve as an automatic or semiautomatic safety device. Those with extensive usage include the gate valve, plug valve, globe valve, needle valve, check valve, and relief valve.

WELLBORE: a borehole; the hole drilled by the bit. A wellbore may have casing in it or may be open (i.e., uncased), or a portion of it may be cased and a portion of it may be open.

WELL COMPLETION: the activities and methods necessary to prepare a well for the production of oil and gas; the method by which a flow line for hydrocarbons is established between the reservoir and the surface. The method of well completion used by the operator depends on the individual characteristics of the producing formation or formations.

WELLHEAD: the equipment used to maintain surface control of a well, including the casinghead, tubing head, and Christmas tree.

WELL LOGGING: the recording of information about subsurface geologic formations. Logging methods include records kept by the driller, mud and cutting analysis, core analysis, drill stem tests, and electric and radio activity procedures.

WELL PERMIT: authorization, usually by a governmental conservation agency, to drill a well. A permit is sometimes required for deepening or remedial work also.

WELL SERVICING: the maintenance work performed on an oil or gas well to improve or maintain the production from a formation already producing. Usually it involves repairs to the pump, rods, gas-lift valves, tubing, packers, and so forth.

WELL SPACEING: the regulation of the number and location of wells over a reservoir as a conservation measure.

WELL STIMULATION: any of several operations used to increase the production of a well.

WILDCAT: a well drilled in an area where no oil or gas production exists. With present day exploration methods and equipment about one wildcat out of every six proves to be productive although not necessarily profitable.

WILD WELL: a well that has blown out of control and from which oil, water, or gas is escaping with great force to the surface; also called a gusher.

WINCH: a machine that pulls or hoists by winding a cable around a spool.

WORM: (slang) a new and inexperienced oil-field worker.

YIELD POINT: the maximum stress that a solid can withstand without undergoing permanent deformation either by plastic flow or by rupture.

ZONE: a rock stratum that is different from or distinguished from another stratum (as pay zone).
amount of money that the "white collar" is. But the "white collar" doesn't realize that the man who works
at the oil field is seven days a week, sometimes twelve to fourteen hours a day...away from his wife...most
of the time they have to drive...now I don't know how it is on this one...these guys here are driving from
pretty close areas. Not all of 'em are from this area. We got guys from Canada, Oklahoma, Texas and Arkansas
workin' on this rig. They're moved into this area and the expenses grown out of it are tremendous. But to
return to the term "oil field trash," this happens when these guys move into this area or any area
where a "boom" is and the people in town can't understand their kind. (Pause) This kind of life...well...it's
a hard life, a fast life. They work hard...they also play hard. They, the folks in town, don't understand this.
That's where the term comes from...just like in the 60's.

WV: Have you noticed any change in people's attitudes toward you recently either good or bad?

HR: After a while, you do. Especially if you're livin' here, and have a wife and some kids, they seem to treat ya
a little better. A good sign will be when the prices start comin' down.

RG: You know, ya price a...take an oil field town like here in Elk City—go there and price a pair of roughneck
boots—then go to the city and price 'em.

WV: Well, I'm not familiar with these, how much did they cost?

RG: I bought a new pair here the other day...$77, no $78's what I had to pay for 'em. They're just a steel-toe
boot. Used to you could buy boots—of course everthin's gone up 'cause of inflation—used to $29 could
buy a pair o' boots.

WV: What would those same boots cost you today in Oklahoma City?

RG: In the city I paid $52.

HR: And where I'm from, I could buy the same boot for $33.

WV: Where's that?

HR: Siloam Springs, Arkansas.

WV: Hmm...sounds like some businesses are takin' advantage of a captive market with "price gouging."

RG: Gas is cheaper in the city as well as the food prices. Here it's higher 'cause they know the oil fields here and
they're gonna' pay it. What's it gonna cost ya to go to Oklahoma City and back just to buy a pair o' boots?
Maybe $20. You're gonna pay it here. And them people know it at the stores and stuff and they're gonna
get it too.

WV: I was having a conversation about this the other day with a former teacher of mine. He's really interested in
the oil field activity but he doesn't think it will last at the pace it's going for more than three to four years.
What's your opinion from an insider's view? Will the locations around Clinton, Elk City and Weatherford be
"hot" now and later die down?

HR: It will eventually die down later on, but it will be here for a while.

WV: About how long do you think?

HR: I'd say about ten years.

WV: I'm sure a lot of people are speculating—investing in a lot of real estate properties, and so on. I'm wondering
if all these areas are someday going to be just like ghost towns. Is there much maintenance in the production
end of oil?

RG: Yes, there will be maintenance.

WV: So, there will be a certain amount of people that will stay here to maintain the well and pipeline.

RG: Oh yeah! For several years to come. There's a difference say between the Enid oil field and here. In Enid,
9,300 feet was a deep hole—here, somewhere around 27 - 30,000 plus. Here's the difference in it...you're
talking about two years drilling time as to, at the most, two months. There's a lot of difference in where
geographically, you're drilling at. You take, what he was talkin' about. You drill a deep hole, it ain't fast
drilling 'cause you have to start off with such a big hole. Nobody's been this deep before you know. Nobody
know what's down there or been that deep.

WV: So you don't know for sure if you're gonna hit anything?

HR: Right.

WV: Gosh, what a tax write-off if you don't. But aren't the companies pretty sure they're going to hit something?

HR: Yeah, they're pretty sure they're gonna hit something. They just don't pull up anywhere and say hey! this
looks like a good place to drill. That's the reason your seismograph crew goes 'round and gets readings of your
formation.

WV: Are those tests pretty reliable?

RG: Yeah. They're pretty good, I mean they can pretty well tell there is something there. But how much there is
and how strong it is...that's a different story.

WV: How long do you think a well like this is going to produce?

RG: You never can tell. It's according to how much gas is down there.

WV: Most of these are gas wells in this area?

RG: Do you understand exactly what a gas well is?

WV: No, tell me.

HR: It's seepage from sand pockets, sand formations. Your oil is the same way. It's seepage from sand. You have
a sand formation down there and usually your best wells are on cap ridges, 'cause your pressure sends the oil
and everything up here.

WV: Do those pockets have predictable directions that they go in. Seems in some areas of the landscape the wells
are all drilled in an almost straight line for miles

HR: That is rather rare, 'cause it can kick out, it might come back in, and you might drill right here and not hit
nothing. But you might go right across and hit right in the middle of that vein.
They can directional drill as long as they've got the mineral rights to where they're tapping to. Say I owned 80 acres. I can go over here in the southwest corner and drill down into the southeast corner if it's geographically impossible to drill straight down. There are experts in the field that can drill around underground boulders and other obstructions these days. You never know what you'll run into.

Let's talk about the physical abuse a "rounneck" has to undergo during the course of an average day. It's really rough on their body physically isn't it?

No, not really... they get used to that. It's harder work than what you're doin' in town.

If you really want to know the technically hard part for a rounneck, it boils down to family life. The hours away from family. If you really love the oil field it plays havoc on married life. (Ronnie is one of the few exceptions who has stayed married.) In the oil field most marriages of three to four years is a long marriage.

Why do you think that is... because of the separation?

Yes! You just don't have enough time together.

No, we don't rotate. It's a permanent position. Seven days a week you ain't gonna take your family no where.

It's not really that important. What do you want? I mean do you want a good living or do you want to live...

Well, that's a little high, especially after taxes, it's more like $9.50 an hour. Taxes every two weeks are about $345. Where here they probably take home $8 something here after deducts. Not many guys want to work at a "city" job and just "make it" when they could come out here to work and have that new car, you see what I'm saying.

Well then, you're saying that money is very important.

It's not really that important. What do you want? I mean do you want a good living or do you want to live...

I guess it's all relevant. I couldn't stand being cooped up all day behind a desk. I like my freedom.

So in essence, you're saying that even though your salaries are higher, so is your cost of living compared to the average person, is that right?

Well, yeah... you try to find a place to live around here, especially when they find out that ya work in the oil field. There's more comin' in than places to live...some of 'em are living in their cars or campin' by the lake in a tent! If yer lucky enough, to find a place the landlords automatically jack up the deposit and rent per month, 'cause they know we gotta have it and can pay it. I know one guy with a family that's put $200 deposit down on a concrete slab, the foundation on an apartment that's not even built yet! Another'n I knew had to buy a trailer house and the payments were $600 a month, then he had to turn around and pay $100 more just to park it in the parking spot. So that's $700 a month, then you try to figure your bills on top of that, OK? He can't get out of the oil field now, and he can't go to town to go to work, so he has to stay here till he gets that greater pay. If a man was smart when he applies for that loan, he would tell them that he was working at a service station or something to get them payments down where he can stand it, but most of 'em are proud that they are making good money and they cut their own throats. They'll let the "average Joe" pay for a loan over 20 years, but a rounneck has to pay it off in 7 years. To stay in the oil field is the only way to start turning it around, in the beginning though you more or less live from payday to payday.

Sounds like you really have to pay your dues. Does it finally start paying off when a guy gets to be a driller or crew boss?

Well, that all depends on the person, the way they manage their money, ya know. Ya still hafta stand in the rain and snow, while the city guy's just watching it through the window, and you got to keep your "hands" a-workin', and make split-second decisions.

The next step up from driller is toolpusher, right? What are the pitfalls of your job as no. 1 toolpusher on this rig?

This job here, it's a good job, but it's more brainwrackin' than anything. Yeah, you got the responsibility if something happens on the rig or your "hands" aren't showing up, then you got to "chew-out" the driller. Somethin' could break-down or you gotta have an electrician, mechanic, or welder to fix some repair...that's all part of your job.

Mainly, he's like a coordinator.

Sounds like you have a lot of headaches.

Yeah, sometimes... you know mainly everythin' goes up at once... like that one day out here, remember that Herb? Two o' my motors quit on me, then my mudline washed out. Ya go all kinds of steel down in that ground, and the ground's not easy to ya, it's rough. You don't move it, you don't work the pipe, or ya get stuck. Ya got thousands of dollars tied up in that hole. You see, a lot of this is a split-second decision. Most of the time it's not a perfectly straight hole. You'll have yer pockets and boulders. Sometimes you'll get one boulder that'll fall from one side and then maybe another from the other side on top of the drill bit. Then yer stuck! That's what I'm talkin' about... split-second decisions. The drill bits alone cost anywhere from $9,000 to $17,000 for a diamond bit. Sometimes you decide wrong, but if that happens too many times, you're lookin' for a new job.

How does someone go about finding work on a rig? I've seen a lot of hitchhikers coming into all these towns, probably from out of state. Do many of them find jobs?
HR: Usually you can't hitchhike and find a job in the oil field. Your rigs are not all in one spot here like in some towns, they're scattered all over. If you don't know somebody with a car, you're outta luck. A lot of it depends on luck, being in the right place at the right time. You can leave your name and a phone number in convenience stores and restaurants around town where the drillers go. If they need a hand, you may get lucky and he'll give you a call. The only other way is to go to each rig and ask. I'm sure a lot of guys come in here hitchkin' can't find any work, get disillusioned or their money runs out and they move on. It's tough.

Suddenly, we're interrupted by the August rainstorm that had been threatening since my arrival. On the roof of the toolpusher's new mobile home the raindrops explode to a deafening roar. Both Herb and Ronnie go look out the door at the sheets of rain. Fifty yards away is the drone of the engines now familiar. I think of the men who are out there working in that grease and oil, and how this new element must add to their discomfort. Then as suddenly as it began, the rain stops...the conversation continues.

WV: Can you tell if a guy's going to "make a hand" as you call it, just by looking at him? What characteristics do you look for?

RG: Sometimes ya can, sometimes ya can't. He gotta be a "non-doper" to start with...that's the biggest problem today. We got people hired new with dogs and sniff that stuff out. We just can't have that or a drunk anywhere. Anytime ya work around steel or work above ground...a mistake, even a small one...can kill you or somebody else.

HR: Yeah...that's the difference...person's gotta be alert, along with bein' able to do the physical labor. They hafta put up with mud'n their hair and eyes, busted fingers and arms and working 40-90 feet off the ground...stuff like that. Lotta people begrudge us makin' so much.

RG: Not only do we do the drillin' part...you also gotta paint this rig. What's painters get an hour? He gotta paint this rig, he gotta scrub this rig from top to bottom. Really, when ya hire a roughneck, you're hirin' a painter, an operator, ya gotta know how to run a forklift and motors...he gotta know about motors. He gotta be able to do about fifteen jobs.

HR: (Looking out the window) Have you ever been on a rig when it was "makin' a trip"?

WV: No...I haven't.

HR: Would ya like to go up and see it?

WV: (A big grin came on my face) Sure would!

Herb hands a gold hard-hat to me, much to my amazement, and says, "Put this on, the guys'll think we've hired a new driller!" We walk the gravelly expanse between the trailer and the bottom of the rig which looms overhead. Herb proudly points out the diagonal elevator which effortlessly lifts us 40 feet to the "doghouse", a side room on the rig floor which acts as shelter both for the men, as well as the recording equipment. The room is spotless. I look at the floorhands busily working around the pipe that is "coming out of the hole," studying their faces, searching to find the quality they had spoken of earlier. They all looked like "ordinary" men, but I knew through their hard work, they were one of the three best crews around. Both Herb and Ronnie go grab a "kelly" hoisting the pipe stems reminds me of the sounds that would echo through an old sailing vessel. We take a tour around the floor and I notice the safety slides that shoot downward for crew members to escape in case of a "blow-out." The rhythmic thrusts and pulls of the driller at the controls and the floorhands synchronized movements remind me of some kind of strange ballet performance...the immenseness of it all, drives home its reality...

WV: How tall is this rig?

HR: 154 feet tall, 38 feet from there to the ground.

WV: Can you tell me about what each man is doing? Do you have beginners that stand and watch? How does a man learn what to do?

HR: (Laughingly) Usually they start as a "worm." Don't ask me why they call it that...but say you came out to work here...we'd start you out as a "worm." Don't know nothing about what's goin' on. Say for instance, they need another tool pusher, and they want to promote this here daylight driller to the job...now I got an opening. If I like the derrick hand and think he's capable, I'll give him a drilling job. Then if that motor man wants that derrick job, I'll give him that job. So you just move them. Then the chain hand moves to motorman, and the "lead tongs" moves to "throwin' chain." Then the worm has a job! The guy that moves to the drillin' job, gets the worst shift first, morning tower. They call that the "dog tower." Then he moves up through vacancies to the "daylight" job.

WV: So...he has to pay his dues too?

HR: That's right.

WV: Could you describe in a bit more detail what each man does?

RG: Well, you take a floorhand...you got two of 'em. One runs the "make-up tongs," the other the "break-out tongs." They're the ones that put the pipe together or take it apart. Alright, then you got a motorman. What the motorman does...he holds you on that pipe so when he latches on to it up there...when it swings across the floor, it just won't swing in the air...he holds it and leads it over there, stabs it in there, then the floorhands screw it up. Then yer derrick hand up above you, see what he does. He pulls the pipe out, steadies it at the top, drops it in and latches it. That's what's called "makin' a trip." When you're drillin', your derrick hand...he's out there in that mud house with a mud chart like this'n. We got a mud engineer that tells ya how thick he wants that mud and what he wants it in. So he keeps it that thickness...how much it weighs and he got a scale out there that tells you how thick it is, that's what you call yer viscosity. If it needs water you add water, if it don't, you don't. Besides that he checks on his pumps and makes sure they're runnin' right. If they ain't, he fixes them. The mud pumps that check your mud...we got 3 of 'em on this rig. Most just have 2 of 'em, but this rig's got 3! You take yer motorman...he keeps check of these water tanks all the time and makes sure he's got plenty o' water. He keeps oil in his motors in his radiator...everythin' checks on his motors and keeps that motor shaft cleaned up. You got yer floorhands...they pretty well keep yer floor cleaned up on the rig and stuff. Usually your motorman helps him. You check yer motors and go out there and paint awhile, then check yer motors. It's a steady job. If you really want to know the truth, they all should be performing 10 hours of work in an 8 hour shift. It's not like the "white collar" worker.

WV: So there's never any slack time?

HR: No, well, once in a while they'll take 10 or 15 minutes. Now some of these companies there's slack time. On the morning tower and later evening tower's when they get things caught up, they don't do an awful lot. With Parker, no, it's not that way. They want the rig clean and looking good all the time.
WV: Which job do you think is the most dangerous... would it be that of the derrick hand, since he's 90 feet above ground?

HR: Well, they're all dangerous, but yea, the height has something to do with it. You hafta keep alert all the time. On one rig I was workin', the derrick hand apparently got hot and wanted to take off his jacket, so he unhooked his safety belt, took his jacket off, a pipe came up and he grabbed it without thinking and fell all the way to the floor to his death! A man can never take safety for granted. His safety belt was all he had... poor sucker.

WV: How much does that pipe weigh, does the derrick hand have to lift all that weight?

RG: Well, that's called a "joint" of drill pipe 31 feet long, 19 lbs, per foot makes each joint weigh 589 lbs. When they 'trip,' 3 joints of pipe connected make a stand, 93 feet long, 1767 lbs. Total. But he doesn't have to lift that, he just steadies it so it can be hooked up and guided so the floorhands can tighten it up or "make the connection." Three joints tall or a "stand" of pipe is what they connect at one time when they're "trippin'".

WV: Tell me what a good well's production will come in at, I mean how many barrels of oil, and how many million cubic feet of gas per day?

RG: Depends on what they want, I've seen wells back in my days that they plugged, now they're drilling and producing those same wells. They plugged 'em back then because they didn't think they'd make enough production. They didn't think there was enough oil there to mess with, course at that time they weren't goin' as deep either. I tell you, you get into politics, and that's the kind of stuff I don't want to talk about 'cause it could get us in trouble.

WV: So it's not like in the old days with 'gushers' like the "Wild Mary Sudik"? Would that be a good well in terms of today's production rates?

HR: It would be considered a very good well by today's standards, but it was the first well drilled in that field and the pressure was tremendous underground. That's why it came in at 20,000 barrels a day!

WV: Then you don't have "gusher" wells anymore?

MR: Well, there are so many wells being drilled in this area that the pressure isn't going to be that great. We have newer equipment that controls the regulation better and allocations that have to be met. We still have exceptional wells today, but they just don't come in that spectacularly. Today, anythin' over 600 barrels o' oil comin' in a day is a good well! All these wells are wildcats, 'cause ya don't know what's down there.

WV: What depth is this well going to drill to? I've heard several different depths mentioned?

RG: Around 33,000 feet, over 5 miles deep.

WV: What if you hit something before you get that far, will you stop there?

RG: Nope. We're going for the world's deepest hole. That's part of it.

WV: Do you ever have women apply for a job out here? Are there many different depths mentioned?

RG: (An emphatic) NO!

WV: Why is that, because they can't stand the...

HR: There's no place for 'em.

RG: Did you see how dirty they was? Would you want that all over you?

WV: I'm not saying I want a job in the oil field, but what if there was a woman?

RG: Would you want yer hands to look like this... with grease in yer pores?

WV: No.

HR: Well, that's why ya don't see women out here.

RG: If you can't lift that sack all day long and a man can, then what do I want you for?

WV: Well, I thought I'd ask. I understand you're not being chauvinistic, just realistic. I'd heard about a rare few women that were rough-necking, and was mainly curious. Personally, I agree with you. I don't think many women want to see the strength to work in the oil fields.

(RG: "There's no place for 'em.")

WV: (Pause) Herb, I never did ask how you came to work in the oil field?

HR: I started out drivin' 360 miles one way to work, leavin' at 4 in th' mornin' and gettin' home at 10 at night, for eight months straight... seven days a week. That gets old after awhile, but I've been doin' somethin' related to this field ever since. (Proudly) I helped build this rig. I didn't plan on workin' out here, but Ronnie asked me to come out.

WV: And you've been here ever since.

HR: Yeah... I've enjoyed it though. Ronnie's a good man to work for.

WV: Well, after all you've said and showed me today, I've learned a lot. It's rough, hard work and I respect your profession and the honest thoughts you've shared with me. You're a part of history, the pioneer for the future. How does that sound?

HR: Pretty good... I guess.

RG: It's a livin'... (grinning).

WV: Thanks for everything... especially the photos. Herb, I'll come back to see you one of these days to get another ride up the elevator.

BOTH: OK... come back anytime... can't wait to see yer magazine.

As I turn to leave a deep respect for these wels up inside of me. The fortyfive minute expanse back to Weatherford gives me time to reflect on all I've seen and heard during the day. The parallels between the two periods of history grow apparent to me again and I feel fortunate that I've taken the time to try and view life "through their eyes." Then, for no reason, a slogan from TV penetrates my brain as I pass another rig, it's lights blazing in the twilight: "If you don't have an oil well... GET ONE!!! I laughed for a moment as I thought... "Don't we all wish we could!"

A special thanks to the GHK Company for permission to reprint portions of their May 1981 brochure, Herb Ropp and Ronnie Givens for their permission to be interviewed, and the crews of the Parker No. 201.